Emission-free mobility is already a reality today, with Mercedes-Benz and smart electric cars meeting all the requirements for everyday use. The smart fortwo electric drive is the pioneer for exclusively battery-driven electric vehicles.

The second generation of this car currently in production features a high-efficiency lithium-ion battery providing a range of 135 kilometres and impressive driving performance. And the portfolio of Mercedes-Benz battery-powered electric vehicles is now further extended with the new A‑Class E‑CELL, that has a range of over 200 kilometres, five full-size seats and unrestricted space in the interior and luggage compartment. Like all battery-powered electric vehicles, the smart fortwo electric drive and A‑Class E‑CELL are mainly suitable for use in urban areas.

The Mercedes-Benz B‑Class F‑CELL with fuel cell and electric drive system carries its own fuel, and its greater range of around 400 kilometres allows both emission-free driving in city traffic and longer journeys outside city limits. It takes just about three minutes to completely fill its tanks with hydrogen gas from a dispenser device that has already been standardised all around the world. That makes the B‑Class F‑CELL the electric car with the longest range and shortest “charging time”.

One of the prerequisites for widespread customer acceptance and the rapid spread of electric vehicles is the availability of an adequate filling and charging infrastructure. Daimler is therefore actively committed to the development of a comprehensive network of charging points and hydrogen filling stations. In September 2009, the company collaborated with the German Federal Ministry of Transport and partners from the energy industry to start the “H2 Mobility” initiative for the construction of a hydrogen infrastructure in Germany. At the same time Daimler made a joint commitment with other leading automakers to have several hundred thousand fuel-cell vehicles on the road as from 2015. And in parallel with these efforts, the automobile manufacturer from Stuttgart is also working with a range of partners at European level on moving ahead with a public electricity-charging infrastructure. There is a clear need for such filling points, since even though electric vehicles such as the A‑Class E‑CELL can easily be charged up in a garage overnight, around 40 percent of European car owners do not have this kind of parking place for their vehicle.

Mercedes-Benz involvement in “e-mobility” projects to get electric cars onto the road
Electric vehicles under the Mercedes-Benz and smart brands are already running successfully in a series of “e-mobility” projects in Germany, France, Italy, Spain, the United Kingdom and Switzerland. Other markets include Belgium, the Netherlands, Portugal, Denmark and the Czech Republic, and also North America (USA and Canada). For the project in Berlin, for example, Daimler has provided over 100 electric vehicles, while its project partner RWE is responsible for the construction of 500 electricity charging points within the territory of the city, to be supplied solely with power generated from renewable sources.

Baden-Württemberg region to lead the way towards electric mobility
In June 2010, EnBW Energie Baden-Württemberg AG and Daimler started a joint “e-mobility Baden-Württemberg” initiative. The aim is to turn the birthplace of the automobile into a pioneering region for locally emission-free electric mobility within the next two years. Starting point of the initiative is the regional capital Stuttgart, with Karlsruhe providing a second focal point in the region. Daimler and EnBW are setting new standards with their strategic partnership. EnBW brings to the table its expertise, with in-depth know-how of energy logistics used in the development of intelligent, customer-friendly battery charging models, as well as intelligent grid management and control skills, and can provide suitably versatile energy carriers – plans include an intelligent electricity charging and hydrogen infrastructure. In addition to already on-going “e-mobility projects”, the new initiative is intentionally geared to variety.

The “e-mobility Baden-Württemberg” project will involve the deployment of around 200 smart and Mercedes-Benz vehicles, with battery or fuel-cell drive systems according to the model. And within the medium term, further vehicles from the Daimler portfolio of emission-free electric vehicles will be brought into the strategic partnership, so the fleet of A‑Class E‑CELL, B‑Class F‑CELL and smart fortwo electric drive cars will be joined by the first series-produced electric delivery vehicle, the Vito E‑CELL, and the Citaro FuelCELL hybrid bus, for example. In this way the inventor of the automobile will demonstrate the feasibility of electric mobility in all key mobility areas – individual transport, goods deliveries and urban public transport. EnBW plans to have over 700 charging points set up in Baden-Württemberg by the end of 2011, along with two or three hydrogen filling stations. The power supplied to EnBW charging points will be 100 percent hydro-generated.

Internal combustion engine set to remain the most important drive system
Mercedes-Benz sees the development of electric vehicles with battery and fuel-cell drive systems for future locally emission-free mobility as complementing the extremely clean and economical BlueEFFICIENCY models and hybrid vehicles already available today. State-of-the-art diesel and petrol engines will retain their position as the leading automobile engine technologies for many years to come – in passenger cars for individual transport, particularly for long-distance transport, and above all for freight carriage by road. On city streets, there will be increasing numbers of electric vehicles in future. Mercedes-Benz has therefore developed a multi-pronged approach to the issue, with the internal combustion engine continuing to play an important role. Notwithstanding the remarkable progress achieved with fuel-cell and battery-powered electric vehicles, there is no prospect of them replacing the internal combustion engine altogether within the short-term future. This is because of the system cost and infrastructure issues that still have to be resolved as the basis for the problem-free operation of electric vehicles across the whole of the country’s roads.

Source: Daimler AG